Temporal Features Vector Matching ( 2 nd stage of Case Selection ) Set of Spatially Matching cases Set of Spatially and Temporally Matching cases Case switching Decision tree Case Adaptation Case
نویسندگان
چکیده
This paper presents an approach to learning an optimal behavioral parameterization in the framework of a Case-Based Reasoning methodology for autonomous navigation tasks. It is based on our previous work on a behavior-based robotic system that also employed spatio-temporal case-based reasoning [3] in the selection of behavioral parameters but was not capable of learning new parameterizations. The present method extends the case-based reasoning module by making it capable of learning new and optimizing the existing cases where each case is a set of behavioral parameters. The learning process can either be a separate training process or be part of the mission execution. In either case, the robot learns an optimal parameterization of its behavior for different environments it encounters. The goal of this research is not only to automatically optimize the performance of the robot but also to avoid the manual configuration of behavioral parameters and the initial configuration of a case library, both of which require the user to possess good knowledge of robot behavior and the performance of numerous experiments. The presented method was integrated within a hybrid robot architecture and evaluated in extensive computer simulations, showing a significant increase in the performance over a non-adaptive system and a performance comparable to a non-learning CBR system that uses a hand-coded case library.
منابع مشابه
Matching of Polygon Objects by Optimizing Geometric Criteria
Despite the semantic criteria, geometric criteria have different performances on polygon feature matching in different vector datasets. By using these criteria for measuring the similarity of two polygons in all matchings, the same results would not have been obtained. To achieve the best matching results, the determination of optimal geometric criteria for each dataset is considered necessary....
متن کاملاستفاده از Propensity Score برای همسان سازی نمونه ها در یک مطالعه مورد شاهدی
Background and Aim: Case-Control studies provide evidence in the area of health. Validity and accuracy of such studies depend to a large extent on the similarity (similar distributions) of the case and control groups according to confounding variables. Matching is a method for controlling or eliminating the effects of important confounders. Matching using propensity score has recently been intr...
متن کاملOn the inverse maximum perfect matching problem under the bottleneck-type Hamming distance
Given an undirected network G(V,A,c) and a perfect matching M of G, the inverse maximum perfect matching problem consists of modifying minimally the elements of c so that M becomes a maximum perfect matching with respect to the modified vector. In this article, we consider the inverse problem when the modifications are measured by the weighted bottleneck-type Hamming distance. We propose an alg...
متن کاملA Bayesian Approach for Retrieving Relevant
The problem of nding the set of most relevant cases from a given database, with respect to the decision making situation at hand, is frequently encountered in many real-world domains. In the case-based reasoning framework this task is commonly known as the case matching problem. Case matching is an important problem in several commercially signiicant application areas, such as industrial conngu...
متن کاملCase Selection via Matching
This article shows how statistical matching methods can be used to select ‘‘most similar’’ cases for qualitative analysis. I first offer a methodological justification for research designs based on selecting most similar cases. I then discuss the applicability of existing matching methods to the task of selecting most similar cases and propose adaptations to meet the unique requirements of qual...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002